If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-24t-16=0
a = 4; b = -24; c = -16;
Δ = b2-4ac
Δ = -242-4·4·(-16)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{13}}{2*4}=\frac{24-8\sqrt{13}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{13}}{2*4}=\frac{24+8\sqrt{13}}{8} $
| X^2-5/2x-36/16=0 | | 40x-18=-20x | | .374=1.7x.22 | | 17+5x=5(x-5)+8 | | 6x-{2x+3(x+1)}=x+20 | | 5(3y-1)=-21 | | 16+4(x-5)=-8-(2x+4) | | 89=x+13(7)x | | -7x+15x+8=-4x+4 | | A=2(x×2x) | | 3/5m+2=6 | | 3v÷5=30 | | y/2.3=0.46 | | 8m−7=4m+5 | | -5a+3=-82 | | -13x-20=-16x-17 | | -4x-x+2(4x-1)=5x+2 | | 7u=14÷3 | | 1/4x=10/24 | | 1(t+1)=10 | | 18+2x-5(x+3)=8-(x-3) | | 55=-1+4x | | 14x+2=9x-13 | | 6y^2+7y-9=0 | | 8-(x+7)=5(x+6)-2 | | -12+8(6x-1)=7(8x+3) | | 4x/5+2=3x/10 | | x^2-12=4x+56-4(x+1) | | 0.9a=0.9+0.7a | | 10-2(x-8)=4+3(x+7) | | 7(w+6)-5w=36 | | 1/2x=9/2 |